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Abstract. We consider the motions on the unit spherex2 + y2 + z2 = 1, in a potential
V ∝ 1/(xyz)2/3, which have been shown earlier to derive from acompletely integrable
Hamiltonian. The separation of variables is completed in terms of an independent variable
u which differs from the canonical timet : 3u = 9(mt + I28) − S wherem and I2 are the
two integrals of motion,S is the action, and8 is the integration constant (constant along each
trajectory). Finally a Lax pair is deduced from a separable form of the system (Lax P D 1968
Commun. Pure Appl. Math.21 467).

1. Introduction

It has recently been noted (Gaffet 1996) that the Hamiltonian in three-dimensional flat space,
defined by the equations of motion

xx ′′(t) = yy ′′(t) = zz′′(t) = constant

(xyz)2/3

was reducible, as a consequence of the separability of the radial motion, to another
Hamiltonian governing the two-dimensional motion of a particle on a unit sphere. In the
same work, it was realized that the equations governing these spherical motions possessed
the Painlev́e property (Ince 1956), and a second integral of the motion was found to be
present, in agreement with a well known conjecture (Ablowitz and Segur 1977). The
Hamiltonian considered is thuscompletely integrable, and presumably endowed with the
usually associated remarkable properties, such as the existence of a Bäcklund transformation
(BT) connecting the different particular solutions. A direct search for the BT seemed difficult
however, and we chose to look instead for a formulation in terms of the separated variables:
if such a formation could be obtained, a BT ought to be easily deduced.

In Gaffet (1998) (hereafter referred to as paper I) a certain form of separation of variables
was achieved, assuming a special relation (m = m0(I2)) between the two integrals of the
motionm andI2, which ensured that the quadratures involved were elliptic. In the present
work, the results of paper I are generalized to fully arbitrary values of the two integrals of
the motion, and the general solution is found to be represented by hyper-elliptic integrals.

0305-4470/98/418341+14$19.50c© 1998 IOP Publishing Ltd 8341
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2. General description of the system

2.1. The surface (S) and its parametrization

The equations of motion considered here are those governing point-mass motion on the unit
spherex2+ y2+ z2 = 1, in a potentialVs

Vs = 3/2

(xyz)2/3
(2.1)

they have the form (paper I, equation 1.7)

d

du

(
U ′

V
√
U

)
= 2

3

(
1− U3

U3/2

)
(2.2a)

d

du

(
V ′

U
√
V

)
= 2

3

(
1− V 3

V 3/2

)
(2.2b)

in coordinatesU ≡ (y/x)2/3 andV ≡ (z/x)2/3. The independent variableu, which does
not coincide with the canonical timet , is the following integral over time

u =
∫

dt

(xyz)2/3
(2.3)

and the prime inU ′ andV ′ denotes derivation with respect tou.
The velocity variables are conveniently represented in the form of a three-vectorξ with

Cartesian componentsξ , η, ζ

hξ ≡ (VU ′ − UV ′)
hη ≡ V ′

U2
(2.4)

hζ ≡ −U
′

V 2

subject to the constraint

(ξ + ηU3+ ζV 3) = 0 (2.5)

andh is a constant, taken to beh = I2/2 in paper I; but in the present paper we choose

h = 2√
3

instead, in order not to exclude the cases of the vanishingI2 from consideration.
The two integrals of the motion,m andI2, are, respectively, represented by the following

equations

(U3+ V 3+ 1− 3mUV )+ (ξ2+ η2U3+ ζ 2V 3) = 0 (2.6)

(ξ + η + ζ ) = I2

h
+ ξηζ (2.7)

which, together with equation (2.5), implicitly determine the velocity vectorξ in terms of
the coordinatesU andV . In paper I it was suggested to replace this system (2.5)–(2.7) by
a simpler system involving three variables only:π , ρ, η, through the elimination of the
remaining variablesU , V , ξ andζ , in the following way. Defining

π ≡ mV

U2
(2.8)

ρ ≡ π(ξζ − 1) (2.9)
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the variablesξ andζ are the two roots of the second-degree equation

πξ2− ξ(ηρ + 2π
√
ε)+ (ρ + π) = 0

(√
ε = I2

2h
= I2

√
3

4

)
(2.10)

which has the discriminant1

1 ≡ (ηρ + 2π
√
ε)2− 4π(ρ + π) (2.11)

and is solved as

2πξ = (ηρ + 2π
√
ε)+
√
1 2πζ = (ηρ + 2π

√
ε)−
√
1. (2.12)

In the same way,U3 is the root of the second-degree equation (see equation 2.5)

ζ
π3

m3
U6+ ηU3+ ξ = 0 (2.13)

which has the discriminantD

D ≡ η2− 4π2

m3
(ρ + π) (2.14)

and is solved as

U3 = m3(
√
D − η)

2ζπ3
. (2.15)

The algebraic system (2.5)–(2.7) definingξ(U, V ) is thereby reduced to a single
algebraic equation, representing a surface (S) by the coordinates (η, π , ρ); although the
equation is complicated, it can be written rather compactly in the following way

η(ηρ + πϕ′(η))+ 2πR(ρ + π)+
√
D1 = 0 (2.16)

where

ϕ(η) ≡ (η2− 2η
√
ε + 1) ϕ′(η) ≡ dϕ

dη
(2.17)

and

R ≡ [3π − ϕ(η)]
ρ

. (2.18)

Achieving the separation of variables essentially amounts to finding a simple parametric
representation of that surface; although what is meant by ‘simple’ is not completely clear.
In the light of the results of paper I and of the present work, it seems that, either the
parametric representation ought to be fully rational (as was the case in paper I); or, if it
must involve a radical, the polynomial in two variables under the radical ought to be fully
decomposable (into linear factors).

A general property of the surface (S) in the present problem, revealed in paper I, is that
it presentsa line of singularity(the locus of double points of the plane sections) at

ρ = 0 3π = ϕ(η). (2.19)

As usual, choosing as new variable the slopeR at the double point (see equation 2.18)
will eliminate the singularity. Choosing thenR and η as new independent variables,the
equation of the surface (S) reduces to a mere second-degree equation forρ(R, η)

Aρ2+ Bρ + C = 0 (2.20)
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where

A(R, η) ≡ 4R2(ε − 1)+ 12R(η
√
ε − 1)+ 9η2

B(R, η) ≡ 3m3R2(R + 3)+ 4ϕ(η)[2R(ε − 1)+ 3(η
√
ε − 1)] (2.21)

C(R, η) ≡ 3m3R2ϕ + 18m3R(η2− η√ε)+ 27m3η2+ 4ϕ2(ε − 1).

Remarkably, its discriminant,B2 − 4AC, which is a sixth-degree polynomial inR andη,
turns out to befully decomposable into a product of six linear factors, as will be shown
later.

2.2. The differential system in the new coordinates R andη

We now transform our original differential system (2.4)–(2.7) to the new coordinate system
R, η andρ; that is, we calculate the derivativesR′(u), η′(u) andρ ′(u).

First, the derivative ofπ ≡ mV/U2 is, quite simply

π ′(u) = hm
√
D. (2.22)

Then, we remark that, sinceV ′/U
√
V ≡ hη√m/π , the equation of motion (2.2b) directly

produces the derivative ofη2/π ; it reads

(2πη′ − ηπ ′) = hm(1− V
3)

U3
. (2.23)

Substituting

V 3

U3
≡ (
√
D − η)
2ζ

(2.24a)

1

U3
≡ −ζπ(

√
D + η)

2(ρ + π) (2.24b)

we obtain

(V 3− 1)

U3
≡ π

2(ρ + π) [ξ(
√
D − η)+ ζ(

√
D + η)] ≡ [(ηρ + 2π

√
ε)
√
D − η√1]

2(ρ + π) (2.25)

π ′ having been already computed, equation (2.23) thus yieldsη′, in the form

η′(u) = hm

4π(ρ + π) [η(
√
1+ ρ

√
D)+ πϕ′(η)

√
D]. (2.26)

The same equations (2.24a, b) may also be used to determine an alternative expression for
R, equivalent to (2.18), in the following way

(V 3+ 1)

U3
≡ π

2(ρ + π) [ξ(
√
D − η)− ζ(

√
D + η)] ≡ [

√
D1− η(ηρ + 2π

√
ε)]

2(ρ + π)
≡ −(η2+ πR) (2.27)

to establish the last equality, use has been made of equation (2.16) of the surface (S). This
new expression forR reads

−mR ≡ (V 3+ 1)

UV
+ mη

2

π
. (2.28)

The derivativeR′(u) may be found through differentiation of the above expression. The
derivative of its first term is easily obtained

d

du

(
V 3+ 1

UV

)
= hπ

m
(ζ − ξ)+ hη U

V 2
(V 3− 1)
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while that of the second term is directly given by (2.23)

d

du

(
mη2

π

)
= −hη U

V 2
(V 3− 1).

There is a cancellation of terms, and we obtain the following simple result

R′(u) = h

m2

√
1. (2.29)

The derivative ofρ is also of interest

ρ ′(u) = hm

2π
(
√
1+ ρ

√
D). (2.30)

SinceR′ andπ ′ are respectively proportional to
√
1 and

√
D, this equation may also be

written

(2πρ ′ − ρπ ′) = m3R′. (2.31)

In the same way, expression (2.26) ofη′(u) becomes

(ρ + π)η′ = η

2
ρ ′ + ϕ

′(η)
4

π ′ = 1

4π
[m3ηR′ + π ′(ηρ + πϕ′(η))]. (2.32)

Let us now form the combination

Z ≡ 2ηη′ + (Rπ ′ − 2πR′)

upon substitution of expression (2.32) ofη′, and making use of equation (2.16) of the
surface, we find

2π(ρ + π)Z = m3R′D − π ′
√
D1 = 0.

Thus,η′ admits the simpler formulation

2ηη′ = (2πR′ − Rπ ′). (2.33)

Still another simple relation between derivatives may be deduced through differentiation
of the definition (2.18) ofR

ρR′ + Rρ ′ − 3π ′ + ϕ′(η)η′ = 0. (2.34)

Substitution of expression (2.31) and (2.33) ofρ ′ andη′ yields a relation homogeneous in
R′ andπ ′

R′(u)
π ′(u)

≡
√
1

m3
√
D
= [3+ (R/2π)((πϕ′(η)/η)− ρ)]

[m3(R/2π)+ ((πϕ′(η)/η)+ ρ)] (2.35)

which may be viewed as an alternative, equivalent form of the equation of the surface.
To sum up, we have obtained four simple linear homogeneous relations (2.31)–(2.34)

between the derivatives ofη, R, ρ andπ , which may be written more compactly as

M


η′

ρ ′

R′

π ′

 = 0. (2.36)

It is quite remarkable that the (4× 4) matrixM should be symmetric

M =


−4(ρ + π) 2η 0 ϕ′(η)

2η 0 −2π R

0 −2π m3 ρ

ϕ′(η) R ρ −3

 . (2.37)
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The equation of the surface (S) is, of course

detM = 0. (2.38)

Since, whenη andR are given,π is a linear function ofρ (see equation 2.18), this
equation appears to be cubic inρ. However, the terms cubic homogeneous inρ andπ ,
which amount to

16π(ρ + π)(3π − ρR)
are really second-degree termsin ρ, since, by equation (2.18),(3π − ρR) = ϕ(η).
Expanding the (4× 4) determinant yields, of course, the second-degree equation (2.20).

3. The separation of variables

3.1. Complete decomposability of the discriminantB2− 4AC

The discriminant of the equation (2.20) givingρ(η, R), reads

(B2− 4AC) ≡ 9m6R4(R + 3)2− 72m3R3[η3√ε − 3η2+ 3η
√
ε + (1− 2ε)]

−108m3R2[η4+ 4η3√ε − 9η2+ 2η
√
ε + 2]− 648m3Rη2[η2+ η√ε − 2]

+36[4ϕ3(η)− 27m3η4]. (3.1)

In particular, whenR vanishes it is given by

B2− 4AC|R=0 ≡ 36A6(η)

where

A6(η) ≡ 4ϕ3(η)− 27m3η4. (3.2)

The six roots ofA6(η) may be viewed as the solution of the system

3mki = ϕ(ηi)

ηi
(3.3a)

ηi = 4k3
i . (3.3b)

The six values ofmki precisely coincide with the slopes of the asymptotic directions of the
curve(B2− 4AC) = 0, which are

η ∼ mkiR
in addition, whenR takes arbitrary values the roots of the discriminant become simply

η = ηi +mkiR
meaning that (B2−4AC) is decomposable into the product of six linear factors of the form

(η − ηi)−mkiR.

3.2. The new variablesl1, l2, m1, m2

It is essential that these factors, through rescaling, can be given a formquadratic in ηi (see
equation (3.3a))

Rϕ(ηi)+ 3ηi(ηi − η). (3.4)

Let us form the second degree equation

Rϕ(l)+ 3l(l − η) = 0 (3.5)
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thereby defining two new variablesl1 and l2, the roots of that equation; we also introduce
the auxiliary variablesS andP , m1 andm2

S ≡ (l1+ l2) = (3η + 2R
√
ε)

(R + 3)
(3.6a)

P ≡ l1l2 = R

(R + 3)
(3.6b)

m2
1 ≡ 4ϕ3

1 − 27m3l41 ≡ A6(l1) (3.7a)

m2
2 ≡ 4ϕ3

2 − 27m3l42 ≡ A6(l2) (3.7b)

where

ϕ1 = ϕ(l1) ϕ2 ≡ ϕ(l2).
The linear factors (3.4) that make up the discriminant, may now be written

(R + 3)(l1− ηi)(l2− ηi) (3.8)

and the discriminant itself is therefore proportional to the productA6(l1)A6(l2) ≡ m2
1m

2
2;

more precisely, we obtain

B2− 4AC ≡ 9m2
1m

2
2

(P − 1)6
. (3.9)

Transforming to the new coordinatesl1 and l2—or, equivalently,S andP—we have

R ≡ 3P

(1− P) (3.10a)

η ≡ (S − 2P
√
ε)

(1− P) (3.10b)

ϕ(η) ≡ ϕ1ϕ2

(P − 1)2
(3.11)

and the coefficients of equation (2.20) become

A ≡ 9(l1− l2)2
(P − 1)2

(3.12a)

B ≡ 3

(P − 1)3
[4ϕ1ϕ2(P + 1− S√ε)− 27m3P 2]. (3.12b)

The solution of equation (2.20) is accordingly

ρ ≡
[

3m1m2

(P − 1)3
− B

]/
2A ≡ [4ϕ1ϕ2(P + 1− S√ε)− 27m3P 2−m1m2]

6(l1− l2)2(1− P) . (3.13)

It is worth noting that bothρ andπ (see equation 2.18) are functions linear inm1m2, with
coefficients rational inl1 and l2.

3.3. The differential system in separable form

We may now calculate the discriminants1 andD, which are defined by equations (2.11)
and (2.14)

√
1 ≡

√−m3

h

(l22m1− l21m2)

(P − 1)2(l2− l1) . (3.14)
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The expression for
√
D is more complicated, but can still be written compactly in the

following way
√
D ≡ 2[3π(l22m1− l21m2)− η(ϕ2l2m1− ϕ1l1m2)]

9h
√−m3P(P − 1)(l2− l1)

. (3.15)

Using these expressions the derivativesR′(u) andη′(u), which are given by equations (2.29),
(2.33) and (2.22), may be deduced

R′(u) ≡ (l22m1− l21m2)√−m(P − 1)2(l2− l1)
(3.16a)

η′(u) ≡ (ϕ2l2m1− ϕ1l1m2)

3
√−m(P − 1)2(l2− l1)

. (3.16b)

Differentiation of expressions (3.10) forR andη, yieldsS ′ andP ′

S ′(u) ≡ (P − 1)

[
(S − 2

√
ε)
R′

3
− η′

]
P ′(u) ≡ (P − 1)2

R′

3

(3.17)

hence

S ′(u) ≡ 1

3
√−m

(l2m1− l1m2)

(l2− l1)

P ′(u) ≡ 1

3
√−m

(l22m1− l21m2)

(l2− l1) .

(3.18)

Finally, the separable form of the differential system is found

kl′1(u) =
−l2m1

(l1− l2) kl′2(u) =
+l1m2

(l1− l2) (3.19)

where

k = 3
√−m. (3.20)

Its general solution is given by two quadratures∫
l1 dl1
m1
+
∫
l2 dl2
m2
= 8 (3.21)

where8 is the integration constant; and the value of the independent variableu may be
retrieved from the relation∫

dl1
m1
+
∫

dl2
m2
= u

k
. (3.22)

3.4. The canonical time

A general formula giving the canonical timet in differential form has already been given
in paper I (equation 2.24)

dt = UV

δ

[
du+ 9

8
XYZ d8

]
whereδ = (1+ U3 + V 3) and (9/8)XYZ ≡ (−3/2)hξηζ ; in terms of the new variables
we have (see equations (2.27) and (2.9))

δ

U3
≡ 1+ (V

3+ 1)

U3
≡ (1− η2)− πR (3.23)
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hence

δ

UV
≡ −m

π
[πR + η2− 1] (3.24)

and

ξηζ ≡ η(ρ + π)
π

. (3.25)

Thus, the differential dt involves the denominator (πR + η2 − 1), which is irrational since
π is linear inm1m2. The partial derivative∂t/∂l2 has the general form

m2
∂t

∂l2
= (n0+ n1m1m2)

(d0+ d1m1m2)

wheren0, n1, d0 andd1 are rational functions ofl1 andl2; and it can be reduced to the form

∂t

∂l2
= (N0+N1m1m2)

m2D0
(3.26)

whereD0 ≡ (d0+ d1m1m2)(d0− d1m1m2) is rational.
The rational part of the integral,

∫
(N1/D0)dl2, turns out to be calculable in closed form

as a result of the decomposability ofD0, as we now show.
In the formula (3.23) givingδ, π is the linear function ofρ defined by equation (2.18)

3π ≡ ρR + ϕ(η) (3.27)

and ρ is expressed by (3.13); although complicated, the resulting expression ofδ can be
written compactly in the following way

δ

U3
≡ (1− P)+ (6 − 2P 2m1m2)

4(P − 1)3(l1− l2)2 (3.28)

where

6 = (m2
1l

4
2 +m2

2l
4
1). (3.29)

Denoting δ∗, U ∗ as the new values ofδ and U whenm1m2 changes sign, the product
δδ∗/(UU ∗)3 (which is essentially the denominatorD0) is found as

δδ∗

(UU ∗)3
≡ (P − 1)2+ (62− 4P 4m2

1m
2
2)

16(P − 1)6(l1− l2)4 +
6̃

2(P − 1)2(l1− l2)2 −
(6 + 6̃)

2(P − 1)2(l1− l2)2
(3.30)

where

6̃ ≡ (m2
1l

4
2 −m2

2l
4
1). (3.31)

Noting that: (62− 4P 4m2
1m

2
2) ≡ 6̃2, this may be rewritten

δδ∗

(UU ∗)3
≡
[
(P − 1)+ 6̃

4(P − 1)3(l1− l2)2
]2

− m2
1l

4
2

(P − 1)2(l1− l2)2 (3.32)

which is manifestly rationally decomposable into a product, as a function ofl2. As a result,
the integral

∫
(N1/D0) dl2 is explicitly obtained

m1

∫
N1

D0
dl2 = a0ω1
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wherea0 is a constant whenm andI2 are fixed, and

tanhω1 = B1

m1l
2
2

(3.33)

B1 ≡ B(l1, l2) ≡ (P − 1)2(l1− l2)+ 6̃

4(P − 1)2(l1− l2) . (3.34)

The hyper-elliptic part of the integral,
∫
(N0 dl2/m2D0), must, by symmetry, contain a

termω2

tanhω2 = B2

m2l
2
1

(3.35)

whereB2 ≡ B(l2, l1). When that part is subtracted out, what remains is a hyper-elliptic
integral which no longer involves the denominatorD0, namely∫

ϕ2 dl2
m2

.

The canonical time is thus
t = a0(ω1+ ω2)+ a1τ

τ =
∫
ϕ1 dl1
m1
+
∫
ϕ2 dl2
m2

(3.36)

wherea1 is a constant whenm andI2 are fixed. We remark that, unlikeu and8, the time
t does not satisfy the simple equation∂2/∂l1∂l2 = 0; rather, it is the related quantityτ that
does.

4. The Bäcklund transformation

We consider in this section separable systems of the form

l′1(u) =
m1

(l1− l2) l′2(u) =
−m2

(l1− l2) (4.1)

wherem2
i (i = 1, 2) is a sixth-degree polynomial inli , denotesµ2(λ)

µ2 ≡ (a6λ
6+ · · · + a0). (4.2)

These systems are integrable by quadratures
8 =

∫
dl1
m1
+
∫

dl2
m2

u =
∫
l1 dl1
m1
+
∫
l2 dl2
m2

(4.3)

where8 is the integration constant. The systems studied in the preceding sections are
amenable to this form, by mere inversion of the variablesli (see equation (3.21) and (3.22)),
and the corresponding new form ofµ2(λ) (see equations (3.7) and (2.17)) is:

µ2(λ) ≡ 4[λ2− 2λ
√
ε + 1]3− 27m3λ2. (4.4)
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4.1. The B¨acklund transformation as a linear combination of generators

Let us introduce an auxiliary second-order differential system, whose integral curves
generalize the curvesli = constant, along which we have: d8 = dλ/µ, du = λ dλ/µ,
where λ may be identified withlj (j 6= i). These equations constitute a second-order
differential system for the two unknown functionsli(λ) (i = 1, 2)

dl1
m1
+ dl2
m2
= dλ

µ

l1 dl1
m1
+ l2 dl2

m2
= λ dλ

µ
(4.5)

which determines a two-parameter family of curves

l1 = f (l10, l20, λ) l2 = g(l10, l20, λ) (4.6)

wherel10 andl20 are the initial values (associated, e.g. withλ→∞). For each fixed value of
λ, equation (4.6) defines a point transformation in the (l1,l2) plane; and in coordinates (8; u)
it is a pure translation, with components

∫ λ
∞ dλ/µ and

∫ λ
∞ λ dλ/µ: as a result, trajectories

(8 = constant) are transformed into new trajectories. Moreover, the formulae (4.6) turn
out to be algebraic (rational inλ, linear in µ); they can be identified with B̈acklund
transformation formulae, andλ with the spectral parameter (Scottet al 1973, Ablowitz
et al 1973).

In paper I we considered theu-translation generatorG1, defined by

δ1u = 1 δ18 = 0

and the second generatorG2

δ2u = 0 δ28 = 1.

Clearly, the infinitesimal BT (4.5) is the linear combination

1

µ
(λG1+G2)

of generators, with coefficients dependent onλ. Solving (4.5) for dl1 and dl2 accordingly
yields the system

µ
dl1
dλ
= (λδ1l1+ δ2l1) = m1

(
λ− l2
l1− l2

)
µ

dl2
dλ
= (λδ1l2+ δ2l2) = m2

(
l1− λ
l1− l2

)
.

(4.7)

In coordinatesS ≡ (l1+ l2), P ≡ l1l2, this becomes

µ
dS

dλ
= λS ′(u)− P ′(u)

µ
dP

dλ
= λP ′ + PS ′ − SP ′

(4.8)

whereS ′(u) andP ′(u) are implicit functions ofS andP , which will be calculated later.

4.2. The spectral function

Although the differential system (4.8) may be solved in a systematic way (e.g. through
a limited series expansion in the neighbourhood of a root ofµ2(λ)) since its solution is
rational inλ, linear inµ, the solution may be found much more simply by the consideration
of the spectral function.
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Let us consider a functionχ(u), defined by (Weiss 1983, p 1408; ‘A higher order KdV
equation’)

χ ′(u)
χ
≡ M = [P ′(u)− λS ′(u)− µ]

2[λ2− λS + P ]
(4.9)

whereλ is an arbitrary parameter (the spectral parameter). We show later thatχ(u) also
satisfies a Schrödinger equation, with polynomial dependence on the parameterλ.

First, it will be necessary to establish the form of the algebraic relations determining
S ′(u) andP ′(u) as implicit functions ofS, P

(SS ′2− 2P ′S ′) = (m2
1−m2

2)

(l1− l2) = F(P ; S)

(PS ′2− P ′2) = (m2
1l2−m2

2l1)

(l1− l2) = G(P ; S)
(4.10)

where the functionsF , G turn out to be polynomial inS andP

F ≡ a6S[S4− 4PS2+ 3P 2] + a5[S4− 3PS2+ P 2] + a4S[S2− 2P ]

+a3[S2− P ] + a2S + a1 (4.11)

G ≡ a6P [S4− 3PS2+ P 2] + a5PS[S2− 2P ] + a4P [S2− P ]

+a3PS + a2P − a0. (4.12)

They satisfy a second-order, linear partial differential system

GS + PFP = 0 GP = FS + SFP (4.13)

where the lower indicesS, P denote partial differentiation.
The polynomial equations (4.10), withF , G defined by (4.11), (4.12) and (4.4),

constitute the nonlinear differential system which was the subject of the preceding sections.
We shall also need an expression for the second derivativesS ′′(u) andP ′′(u): they can

be found by differentiation of (4.10), and they are given by

2S ′′(u) = −FP (2P ′′ − S ′2) = −GP . (4.14)

We can now calculate the second derivativeχ ′′(u) of the spectral function

2χ ′′(u)
χ

≡ 2[M ′(u)+M2] = (P ′′ − λS ′′)
(λ2− λS + P) +

[µ2− (P ′ − λS ′)2]

2(λ2− λS + P)2 . (4.15)

It is remarkable that the quantity on the right-hand side is polynomial inλ: we obtain, after
simplification

4χ ′′(u)
χ

≡ 4[M ′(u)+M2] = a6[λ2+ 2λS + (3S2− 2P)] + a5[λ+ 2S] + a4 (4.16)

which has the form of a Schrödinger equation forχ(u), with quadratic dependence on the
spectral parameterλ. It may be rewritten

4χ ′′(u)
χ

= polynomial part of :µ2(λ)

{
1

λ4
+ 2S

λ5
+ (3S

2− 2P)

λ6

}
. (4.17)
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4.3. Generalization to a partial differential equation integrable by the inverse scattering
transform method

The previous results suggest considering the following partial differential system

ψxx = vψ
ψt = Axψ − 2Aψx

(4.18)

whereA ≡ (λ2 − λS + P), and λ is an arbitrary constant. The associated condition of
integrability (the result of the elimination ofψ) reads

vt = Axxx − 4vAx − 2Avx. (4.19)

When v is given by the right-hand side of equation (4.16), this equation becomes a
polynomial of the first degree inλ

λ�1+�0 = 0 (4.20)

where

�1 = a6

{
St

2
+ ∂x [S(3P − 2S2)]

}
+ a5∂x

(
P − 3

2
S2

)
− a4Sx + Sxxx

�0 = 3a6

{
(3SSt − Pt)

6
+ Px(S2− P)+ PSSx

}
+ a5

(
St

2
+ 2SPx + PSx

)
+a4Px − Pxxx. (4.21)

The equations

�0 = 0 �1 = 0 (4.22)

constitute a partial differential system for the functionsS(x, t), P(x, t) (which no longer
involves the arbitrary constantλ). It is the condition of the integrability ofψ , defined
by (4.18) which may thus be viewed as a Lax pair, showing that the system (4.22)
must be integrable by the inverse scattering transform method. The ordinary differential
equations (4.10) correspond, of course, to the stationary solutions of (4.22), andψ = χ eµt .

We expect that the B̈acklund transformation of the ordinary differential system must have
a simple form in terms of the spectral functionχ ; for instance, in the problem considered
by Weiss (1983), wherea6 = 0, the BT results from the inversion of the spectral function
χ , i.e. the change of sign ofM, without changing the value of the spectral parameterλ;
denotingχ̂ , M̂, etc the transformed quantities, the BT is determined by the fundamental
relations

χ̂ = 1

χ
M̂ = −M λ̂ = λ µ̂ = −µ. (4.23)

Note added in proof. In general (i.e. whena6 6= 0), there are two sets of limiting values of(S, P ) as
λ → ∞:(S0, P0) and (S1, P1), depending on the sign ofµ, and the solution of the differential system (4;8)
involvesboth corresponding spectral functionsχ0, χ1 (or, rather, their logarithmic derivativesM0,M1). Denoting
for concisenessM(λ, S, P ) the function defined by (4;9), andMi = M(λ, Si , Pi) (i = 0, 1), the solution of the
differential system (4;8) is

2S = 2(M0 −M1)+ (S0 + S1)

2P = −4M0M1 + 2

[
S0 + S1 + a5

2

]
(M0 −M1)+ [λ2 + λ(S0 + S1 + a5)+ C0]

whereC0 = (S2
0 + S0S1+ S2

1)+ a5(S0+ S1)+ a4, and we have chosena6 = 1. S0, P0 may be viewed as the two
integration constants, andS1, P1 are constants which are symmetrically and algebraically related toS0, P0.
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