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Abstract. We consider the motions on the unit sphare+ y2 + z2 = 1, in a potential

V o 1/(xyz)%3, which have been shown earlier to derive fromcampletely integrable
Hamiltonian. The separation of variables is completed in terms of an independent variable
u which differs from the canonical time 3u = 9(mt + I[b®) — S wherem and I» are the

two integrals of motion$ is the action, andp is the integration constant (constant along each
trajectory). Finally a Lax pair is deduced from a separable form of the systemRLRa 1968
Commun. Pure Appl. Mat21 467).

1. Introduction

It has recently been noted (Gaffet 1996) that the Hamiltonian in three-dimensional flat space,
defined by the equations of motion

constant

xx"(t) = yy"(t) = z7"(1) = W

was reducible, as a consequence of the separability of the radial motion, to another
Hamiltonian governing the two-dimensional motion of a particle on a unit sphere. In the
same work, it was realized that the equations governing these spherical motions possessed
the Painle@ property (Ince 1956), and a second integral of the motion was found to be
present, in agreement with a well known conjecture (Ablowitz and Segur 1977). The
Hamiltonian considered is thusompletely integrableand presumably endowed with the
usually associated remarkable properties, such as the existencé&oklaml transformation

(BT) connecting the different particular solutions. A direct search for the BT seemed difficult
however, and we chose to look instead for a formulation in terms of the separated variables:
if such a formation could be obtained, a BT ought to be easily deduced.

In Gaffet (1998) (hereafter referred to as paper I) a certain form of separation of variables
was achieved, assuming a special relatian=£ mq(l>)) between the two integrals of the
motionm and I, which ensured that the quadratures involved were elliptic. In the present
work, the results of paper | are generalized to fully arbitrary values of the two integrals of
the motion, and the general solution is found to be represented by hyper-elliptic integrals.

0305-4470/98/418341+14%$19.5@C) 1998 IOP Publishing Ltd 8341



8342 B Gaffet
2. General description of the system

2.1. The surface (S) and its parametrization

The equations of motion considered here are those governing point-mass motion on the unit
spherex? + y? + z2 = 1, in a potentialV,

3/2
s = W (2.1)
they have the form (paper |, equation 1.7)
d / U 2/1-U8
2 (4)-35)
d %4 2/(1-V3
2 (o) =3 (5) @2

in coordinatesU = (y/x)%® andV = (z/x)%3. The independent variabke, which does
not coincide with the canonical timg is the following integral over time

dr
‘e / (xyz)?/3 23)

and the prime iU’ and V' denotes derivation with respect &0
The velocity variables are conveniently represented in the form of a three-\ewiitin
Cartesian components 7, ¢

hE = (VU — UV
V/

hn = 2 (2.4)
h¢ = —%
subject to the constraint
E+nU3+¢cv3H =0 (2.5)
and’ is a constant, taken to be= I,/2 in paper I; but in the present paper we choose
2
e

instead, in order not to exclude the cases of the vanishirfgpbm consideration.
The two integrals of the motiom; andl,, are, respectively, represented by the following
equations

U+ V341-3mUV)+ (E2+02U%+¢2v3 =0 (2.6)
I
E+n+0 =7+ 2.7)

which, together with equation (2.5), implicitly determine the velocity vegtan terms of

the coordinateg/ and V. In paper | it was suggested to replace this system (2.5)—(2.7) by
a simpler system involving three variables only; p, n, through the elimination of the
remaining variableg/, V, & and¢, in the following way. Defining

= (2.8)
p=mEr—1) (2.9)
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the variableg and¢ are the two roots of the second-degree equation

L, V3

5 = 4) (2.10)

7E2 — E(np + 27/E) + (p +71) = 0 <¢z=
which has the discriminam

A= (np + 21/e)* — 4 (p + ) (2.11)
and is solved as

21E = (np + 2n/€) + VA 2n¢ = (p 4 27/€) — VA, (2.12)

In the same wayl/® is the root of the second-degree equation (see equation 2.5)
3

c U+ qUP+E=0 (2.13)
m
which has the discriminand
4 2
D=1 - (p+m) (2.14)
m
and is solved as
m3(v/D —n)
U= ——_©—. 2.15
203 (2.15)

The algebraic system (2.5)—(2.7) definiggU, V) is thereby reduced to a single
algebraic equation, representing a surfagp iy the coordinatesn( =, p); although the
equation is complicated, it can be written rather compactly in the following way

n(p +m¢' ) + 27 R(p + ) + VDA =0 (2.16)
where
o) =" —22ve+1) AOES g—‘s (2.17)
and
R = Br = el (2.18)
P

Achieving the separation of variables essentially amounts to finding a simple parametric
representation of that surface; although what is meant by ‘simple’ is not completely clear.
In the light of the results of paper | and of the present work, it seems that, either the
parametric representation ought to be fully rational (as was the case in paper 1); or, if it
must involve a radical, the polynomial in two variables under the radical ought to be fully
decomposable (into linear factors).

A general property of the surfacé)(in the present problem, revealed in paper I, is that
it presentsa line of singularity (the locus of double points of the plane sections) at

p=0 3t = p(n). (2.19)

As usual, choosing as new variable the sldpeat the double point (see equation 2.18)
will eliminate the singularity. Choosing theR and n as new independent variablahge
equation of the surface (S) reduces to a mere second-degree equatiptrfon)

Ap?+Bp+C=0 (2.20)
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where
A(R,n) = 4R%*(e — 1) + 12R(n/s — 1) + M?
B(R,n) = 3m3R*(R +3) + 4p(n)[2R (e — 1) 4 3(ny/e — 1)] (2.21)
C(R,n) = 3m3R%p + 18n3R(n? — n/e) + 2Tm>n? + 4¢p?(c — 1).
Remarkably, its discriminant3? — 4AC, which is a sixth-degree polynomial iR and#,

turns out to befully decomposable into a product of six linear factoes will be shown
later.

2.2. The differential system in the new coordinates R:and

We now transform our original differential system (2.4)—(2.7) to the new coordinate system
R, n and p; that is, we calculate the derivativé(u), n' (1) and o’ (u).
First, the derivative ofr = mV/U? is, quite simply
7' (u) = hm/D. (2.22)

Then, we remark that, since’/U~/V = hn/m/x, the equation of motion (2b) directly
produces the derivative of?/; it reads

1-v3

2y —nn') = hm(U—3) (2.23)
Substituting

v: (WD-mn

5= % (2.248)

i — —é‘]‘[(\/ﬁ—l— 1) (2.2%)

U 20+ m)
we obtain
(V3-1) w [(no + 27 /e)v/D — /Al

= — = 2.2
3 2w+mkw57wuwﬁ+m 5o ) (2.25)

7’ having been already computed equation (2.23) thus yiglds the form

n' W) = ———[n(VA + pv/D) +7¢'()V/DI. (2.26)

4 ( + )
The same equations.@ia, b) may also be used to determine an alternative expression for
R, equivalent to (2.18), in the following way

(V3+1) 4 VD D [VDA —n(no + 2w /¢)]
= - D + =
G =YD -m—tD )= 5o+ )
=—?+7R) (2.27)
to establish the last equality, use has been made of equation (2.16) of the sS)fa€hkig
new expression for reads

(V34+1)  mp?
-mR= ——— = ——, 2.28
" oy x (2.28)
The derivativeR’ (1) may be found through differentiation of the above expression. The
derivative of its first term is easily obtained

d (V3+1\ hr U
a( v )—?(5_5)4-}”7%(‘/ -1
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while that of the second term is directly given by (2.23)

d [mn? U 4
— | — ) =—hn— (V> =1).
du(n) '7‘/2( )

There is a cancellation of terms, and we obtain the following simple result
h
R'(u) = —+/A. (2.29)
m
The derivative ofp is also of interest
h
P (u) = %(\/Z + VD). (2.30)

Since R’ and’ are respectively proportional to’A and+/D, this equation may also be
written

(2o’ — pr') = m°R'. (2.31)
In the same way, expression (2.26):0{u) becomes
’ I /( ) ! 1 ! / !
o+mm = 2o+ Ex' = — (PR + 7' (g + 79’ ). (2.32)
2 4 Az

Let us now form the combination
Z=2n+ (Rr' — 27 R)

upon substitution of expression (2.32) gf and making use of equation (2.16) of the
surface, we find

27(p+7m)Z =m°R'D —n/'~DA = 0.
Thus,n’ admits the simpler formulation
2nn' = (2 R' — R7). (2.33)

Still another simple relation between derivatives may be deduced through differentiation
of the definition (2.18) ofR

PR + Rp — 31" + ¢ (n)y =0. (2.34)
Substitution of expression (2.31) and (2.33)wfandn’ yields a relation homogeneous in
R andn’

R'(u) _ VA B+ (R/27) (¢ (n)/n) — p)]

7'w)  mdD  [m3(R/2m) + (' () /) + p)]
which may be viewed as an alternative, equivalent form of the equation of the surface.

To sum up, we have obtained four simple linear homogeneous relations (2.31)—(2.34)
between the derivatives af, R, p andx, which may be written more compactly as

(2.35)

M —0. (2.36)

It is quite remarkable that the (4 4) matrix M should be symmetric
—4p+m) 2n 0 ¢
2 0o -2 R
M= 4 " . (2.37)
0 27 m® 0

©'(n) R P -3
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The equation of the surfac&)is, of course
detM = 0. (2.38)

Since, whern and R are given,n is a linear function ofp (see equation 2.18), this
equation appears to be cubic in However, the terms cubic homogeneouspirand
which amount to

167 (p + 7)(3m — pR)

are really second-degree termi p, since, by equation (2.18)37 — pR) = ¢(n).
Expanding the (4 4) determinant yields, of course, the second-degree equation (2.20).

3. The separation of variables

3.1. Complete decomposability of the discrimin&dt— 4AC

The discriminant of the equation (2.20) givirdn, R), reads
(B? — 4AC) = Im®R*(R + 3)? — 72n°R3[n°/c — 3% + 3n/e + (1 — 20)]
—1081°R[n* + 4n°/e — M2 + 2n/e + 2] — 648n°Ry?[n? + nve — 2]
+36[4¢°(n) — 27m3n*. (3.1)
In particular, whenR vanishes it is given by
B? — 4AC| g0 = 3646(n)

where
As(n) = 4p°(n) — 27m*y*. 3.2)
The six roots ofAg(n) may be viewed as the solution of the system
amk; = 200 (3.3)
ni
e = 42 (3.30)

The six values ofnk; precisely coincide with the slopes of the asymptotic directions of the
curve (B2 — 4AC) = 0, which are

n ~ mk; R

in addition, whenr takes arbitrary values the roots of the discriminant become simply
n=mn; +mk;R

meaning that 82 — 4AC) is decomposable into the product of six linear factors of the form
(n —n;) —mk;R.

3.2. The new variables, I, m1, m»

It is essential that these factors, through rescaling, can be given agioadratic inn; (see
equation (3Ba))

Ro(n;) + 3ni(ni — n). (3.4)
Let us form the second degree equation
Ro()+3l(l—n)=0 (3.5)
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thereby defining two new variablés and/,, the roots of that equation; we also introduce
the auxiliary variabless and P, m, andm,

(37 + 2R /¢)

S=Uli+b)= R13 (3.69)
R

P=ll,= 3.6

TR+ (3.60)

m? = 4p3 — 2Tm3l; = Ae(ly) (3.7a)

m3 = 4p3 — 2Tm3l5 = Ae(lp) (3.7)

where
o1 =¢() P2 = p(l).
The linear factors (3.4) that make up the discriminant, may now be written
(R+3)(1—ni)Uz2 — i) (3.8)

and the discriminant itself is therefore proportional to the proditti)As(l2) = m%m%
more precisely, we obtain

9m2m?
B? —4AC = —12 3.9
c (P —1)® (3.9)
Transforming to the new coordinatésand/,—or, equivalently,S and P—we have
3P
R = 3.1R
a7 ( )
(S — 2P /¢)
=~ "7 3.1
n a_p (3.1)
192
= — 3.11
o () P17 (3.11)
and the coefficients of equation (2.20) become
91 — Ip)?
A= — 2 3.17%
P12 ( )
3
B=—— |4 P +1—8e) — 2Tm*P?]. 3.1%
P - 1)3[ P1902(P + Ve) m”P°] ( )
The solution of equation (2.20) is accordingly
3mimo [4(/)1(/)2(P +1-— S\/E) — 27mBP2 — m1m2]
=|——=—_—B|/24A= . 3.13
g [(P —1)? V 61 — )21 — P) (3.13)

It is worth noting that bothp andx (see equation 2.18) are functions lineamign,, with
coefficients rational iri; and/s.

3.3. The differential system in separable form

We may now calculate the discriminandsand D, which are defined by equations (2.11)
and (2.14)

N=m3 (3my —12m3)
h (P=D%—1)

JA = (3.14)
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The expression fon/D is more complicated, but can still be written compactly in the
following way

VD = 2[3r (Igma — [5m3) — n(gpalomy — alimy)]
B Oh/—m3P(P — 1)(Ip — ) '

Using these expressions the derivativeé&:) andn’ (1), which are given by equations (2.29),
(2.33) and (2.22), may be deduced

(IBmy — 2my)

(3.15)

R'(u) = (3.169)
V=m(P — D22 — 1)
/ (@2lomy — @1lam2)
= . 3.160
T = 3= — 12— I (31%)
Differentiation of expressions (3.10) f& andn, yields S and P’
R/
S'(u)= (P —1) [(S - Zﬁ)g - n’}
(3.17)
/ 2R/
P'(u) = (P —1)>*—
3
hence
, 1 (lomi—Ilimy)
S'(u) =
@) 3V—-m (b—1) (3.18)
Pw) 1 (Bmy—12my) '
u)=
3/—m  (l2—1h)
Finally, the separable form of the differential system is found
—Ilomq +lymy
kly(u) = klh(u) = ——= 3.19
=G K0Ty (319
where
k =3J—m. (3.20)
Its general solution is given by two quadratures
d I, dl
/ll 1+/2 2 _ o (3.21)
nq my

where @ is the integration constant; and the value of the independent variabiay be
retrieved from the relation

d d
/—1 v 2= (3.22)
my mo k

3.4. The canonical time

A general formula giving the canonical timein differential form has already been given
in paper | (equation 2.24)

_uv
s

wheres = (1+ U2+ V?) and (9/8)XY Z = (—3/2)hénc; in terms of the new variables
we have (see equations (2.27) and (2.9))
8 (V3+1)
mEHTE(l—nZ)—nR (3.23)

dr |:du + gXYZ d@]
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hence
1) _om 2
and
+
gng = 1P+ (3.25)

Thus, the differential dinvolves the denominatorr(R + n? — 1), which is irrational since
m is linear inmim,. The partial derivative)t/dl, has the general form
Jat (no + nimimy)
my—= ——"——
ol (do+ dimamy)
whereng, n1, dp andd; are rational functions af, and/,; and it can be reduced to the form
9t (No+ Numymy)
812 o szo
where Dg = (do + dimim»)(dg — dimimy) is rational.
The rational part of the integra,(N1/Do)dl>, turns out to be calculable in closed form

as a result of the decomposability Bf, as we now show.
In the formula (3.23) giving, 7 is the linear function ofp defined by equation (2.18)

37 = pR + o) (3.27)

and p is expressed by (3.13); although complicated, the resulting expressibreani be
written compactly in the following way

(3.26)

8 (2 — 2P%mymp)
—=@A-P 3.28
TR Ty T Ry (3.28)
where
¥ = (m3ly + m3l3). (3.29)

Denoting §*, U* as the new values of and U when mm, changes sign, the product
88*/(UU*)® (which is essentially the denominatd) is found as

88* P17+ (22— 4P*m?m?) by B (Z+5)
(U3 16(P — DO —I)* * 2(P = D2l —12)?  2(P — D2(lh —1»)?
(3.30)
where
¥ = (m3l5 — m3ly). (3.31)

Noting that: (£? — 4P*m?m3) = £2, this may be rewritten
58* s 2 m3ly
=|(P-1 - Lz 3.32
(UU+)3 [( o 4P — 13— 12)2} (P = D2(l1 — I»)? (3.32)

which is manifestly rationally decomposable into a product, as a functién @fs a result,
the integral [ (N1/ Do) di> is explicitly obtained

Ny
m —db =a
1/D0 2 ow1
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whereaqg is a constant whem and I, are fixed, and

B
tanhw; = —12 (3.33)
mal3

B1= B, 1) = (P —1%(1— L) + (3.34)

4P -2l -1’
The hyper-elliptic part of the integral;(No diz/m2Do), must, by symmetry, contain a

term w,

B
tanhw, = —25 (3.35)
lel

where B, = B(l, ;). When that part is subtracted out, what remains is a hyper-elliptic
integral which no longer involves the denominafog, namely

/ @2diz
mo ’

The canonical time is thus

t =aop(w1 + w2) + a1t

/m% /m% (3:36)
T = +

miy ma

wherea; is a constant whem and I, are fixed. We remark that, unlike and ®, the time
¢ does not satisfy the simple equatiafydl,dl, = 0O; rather, it is the related quantitythat
does.

4. The Backlund transformation

We consider in this section separable systems of the form

’ mji ’ —mp
l = — l = — 4.1
W=0"n T ay @D

wherem? (i = 1,2) is a sixth-degree polynomial ifh, denotes.?(x)
l,LZ = (aGAG +---4agp). 4.2)

These systems are integrable by quadratures
d d
b = / _1 + _2
mi my

Ld Ipdl

u:/ 1dl +/' 2dlz

ni ns

where @ is the integration constant. The systems studied in the preceding sections are

amenable to this form, by mere inversion of the varialésee equation (3.21) and (3.22)),
and the corresponding new form pf(1) (see equations (3.7) and (2.17)) is:

(4.3)

w2 = 402 — 20/ + 12 — 27Tm®)\2. (4.4)
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4.1. The Bicklund transformation as a linear combination of generators

Let us introduce an auxiliary second-order differential system, whose integral curves
generalize the curves = constant, along which we have:®d= di/u, du = A dr/pu,
where 1 may be identified with/; (j # i). These equations constitute a second-order
differential system for the two unknown functiohsr) (i = 1, 2)

d; d dx Lydly  Ipdl X dx
a2 172 _ (4.5)
mi ma 2 mi no "
which determines a two-parameter family of curves
li = f(ho, l20, }) Il = g(lo, l20, 1) (4.6)

wherelig andl,g are the initial values (associated, e.g. with> oo). For each fixed value of
A, equation (4.6) defines a point transformation in the,) plane; and in coordinate®( «)
it is a pure translation, with componenf§O dr/u and fo’\c)\dk/uz as a result, trajectories
(® = constant) are transformed into new trajectories. Moreover, the formulae (4.6) turn
out to be algebraic (rational in, linear in u); they can be identified with &klund
transformation formulae, ana with the spectral parameter (Scatt al 1973, Ablowitz
et al 1973).
In paper | we considered thetranslation generata@;, defined by

5114 =1 Sj_q) =0
and the second generat6s
Sou=0 8o® = 1.

Clearly, the infinitesimal BT (4.5) is the linear combination
1
—(AG1+ G2)
7

of generators, with coefficients dependentionSolving (4.5) for d and d, accordingly
yields the system

di A=l
== = (ASyly + 83l1) = my 2
dx Iy =1
4.7
diz (M81l5 + 8212) =2
_— = =m .
1% dr 12 2l2 2 -1,
In coordinatesS = (I; + o), P = l11», this becomes
ds
Py = 1S (u) — P'(u)
(4.8)

AP . p i ps _sp
Fan =

where S’(u) and P’(u) are implicit functions ofS and P, which will be calculated later.

4.2. The spectral function

Although the differential system (4.8) may be solved in a systematic way (e.g. through
a limited series expansion in the neighbourhood of a rooi&f.)) since its solution is
rational inA, linear inu, the solution may be found much more simply by the consideration
of the spectral function.
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Let us consider a functiop (1), defined by (Weiss 1983, p 1408; ‘A higher order KdV
equation’)
x' () [P'(u) — AS"(u) — ]

M= e sas (4-9)

where is an arbitrary parameter (the spectral parameter). We show latey thatalso
satisfies a Sclidinger equation, with polynomial dependence on the parameter
First, it will be necessary to establish the form of the algebraic relations determining
S’(u) and P’(u) as implicit functions ofS, P
(mf — m3)
(1 —1D)
(I’l’l%lz — m%ll)
(li—13)

where the functiong, G turn out to be polynomial ir§ and P

(S8 —2P'S) = = F(P;S)

(4.10)

(PS?—P?) = =G(P; )

F = agS[S* — 4P S% 4+ 3P?] + as[S* — 3P S? + P?] + asS[S? — 2P]

+as[$? — Pl +axS+ a1 (4.11)
G = agP[S* — 3PS% + P?] + asPS[S? — 2P] + asP[S? — P]

+a3zPS + a, P — aop. (4.12)

They satisfy a second-order, linear partial differential system
Gs+ PFp=0 Gp=Fs+ SFp (4.13)

where the lower indices§, P denote partial differentiation.
The polynomial equations (4.10), witl’, G defined by (4.11), (4.12) and (4.4),
constitute the nonlinear differential system which was the subject of the preceding sections.
We shall also need an expression for the second derivalites and P”(u): they can
be found by differentiation of (4.10), and they are given by

28" (u) = —Fp (2P" = §%) = —Gp. (4.14)
We can now calculate the second derivatiy&u) of the spectral function

2x"(u) (P"=28")  [n?= (P =257

A2 —AS+ P) 202 —AS+ P)2

= 2[M'(u) + M?] = ( (4.15)

It is remarkable that the quantity on the right-hand side is polynomial we obtain, after
simplification

4x" (u)

= 4[M'(u) + M?] = ag[\? + 215 + (35% — 2P)] + as[Ar + 25] + aa (4.16)

which has the form of a Scdinger equation fol (), with quadratic dependence on the
spectral parametex. It may be rewritten

Ax" (u) 128 N (352 — 2P)

— i ., 2
= polynomial partof () {F + 5 =

} . (417)
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4.3. Generalization to a partial differential equation integrable by the inverse scattering
transform method

The previous results suggest considering the following partial differential system
l[fxx = Ul//
Ve = Ay — 2AY;,

where A = (A> — AS + P), and A is an arbitrary constant. The associated condition of
integrability (the result of the elimination af) reads

V= A — 4vA, — 2Av,. (4.19)

When v is given by the right-hand side of equation (4.16), this equation becomes a
polynomial of the first degree ik

(4.18)

AQ 4+ Q2 =0 (4.20)
where
Sl 2 3 2
Q1 =agp E + 8X[S(3P - 25 )] +as0, | P — ES —asSy + Syxx
38S, — P, S,

Qo = 3as {% + P.(S2—P)+ PSSX} +as <Et +2SP, + PSX>

+agP, — Py (4.21)
The equations

Q=0 Q=0 (4.22)

constitute a partial differential system for the functio$\&, 7), P(x,t) (which no longer
involves the arbitrary constarit). It is the condition of the integrability ofy, defined
by (4.18) which may thus be viewed as a Lax pair, showing that the system (4.22)
must be integrable by the inverse scattering transform method. The ordinary differential
equations (4.10) correspond, of course, to the stationary solutions of (4.22), angd .

We expect that the &cklund transformation of the ordinary differential system must have
a simple form in terms of the spectral functign for instance, in the problem considered
by Weiss (1983), whereg = 0, the BT results from the inversion of the spectral function
X, i.e. the change of sign a¥, without changing the value of the spectral parameater
denoting%, M, etc the transformed quantities, the BT is determined by the fundamental
relations

>
Il
>

X

Note added in proof In general (i.e. wherug # 0), there are two sets of limiting values @F, P) as

A — 00:(So, Po) and (S1, P1), depending on the sign qf, and the solution of the differential system (4;8)
involvesboth corresponding spectral functions, x1 (or, rather, their logarithmic derivativedo, M;). Denoting
for concisenesa/ (1, S, P) the function defined by (4;9), antf; = M (%, S;, P;) (i = 0, 1), the solution of the
differential system (4;8) is

28 = 2(Mg — M1) + (So + S1)
a
2P = —4AMoM; + 2|:So + 81+ ;](Mo — M) + [A2 + A(So + 51+ as) + Co

whereCo = (SS + SoS1 + Sf) + as(So + S1) + a4, and we have chosars = 1. Sp, Pp may be viewed as the two
integration constants, anfl, P, are constants which are symmetrically and algebraically relatesd, 6.
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